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Abstract

A binary model of the immune system is used to study the effects of evolution on
the geneti: encoding for antibody molecules. We report experiments which show that
the evolution of immune system genes, simulated by the genetic algorithm, can induce
a high degree of genetic organization even though that organization is not explicitly
required by the fitness function. This secondary organization is related to the true
fitness of an individual, in contrast to the sampled fitness which is the explicit fitness
measure used to drive the process of evolution.

Keywords: immune system, genetic algorithm, V-region gene libraries

1 Introduction

The interplay between concrete actions at a local level and emergent behaviors at the global
level is one of the major themes of artificial life. In the context of evo!ution, an important
question is how selecticm pressures operating only at the global, phenotypic level can pro-
cluce appropriate Iow-level, genetic structures. Thic question is most interesting when the

connection between phenotype and genotype i~ more than a simple, direct mapping. The
immune system provides a good subject for experimentation from this point of view- the
phenotype is not a direct mapping from the genotype but the connection is simple enough
that it can be ~tudicd.

IrI order to defend against foreign cells and rnokulcs, called antigens, an immune system
must. first be able to rccognizc them Antibody molecules are onc of the agents responsible
for antigcll recognition Ftmmgnitior) is ochicvdd when an antibody physically bind8 to an
antigen rrmlm; u]c.Molecular binding rcquirm that. the two molcculcs, amtibm{y and antigrm,
have cornphmentary fihapm. tkwurw the two rrmleculm rnuflt “mutch” in order tf) bind, it
would eccrn that every antigen rwquirc~ u corrctlponding nntil)ody tnolcculc in order to I)c

‘Stlbkitt;[i k’k I!uropcan (knfcmw on Artifkid Life, January 4, 1W3,
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detected. Anundetected antigen could cause infection, illr,ess, or death, so a fit individual
should have an immune system that can recognize all possible antigens.

There arc, however, an almost limitless number of antigens to recognize, and an individual
has only limited genetic resources to allocate to the immune system. Both mice and humans,
for example, have fewer than 105 genes in their entire genome but their immune systems can
make on the order of 1011 different antibody molecules [1, 2], Both the mouse and the
human immune system use a collection of gene libraries to code for components of antibody
molecules. Because the components can be combined in a large number of ways to produce
an antibody, these immune systems can generate a large number of antibodies, even though
the libraries contain only a small amount of genetic information.

Each antibody molecule, for example, is composed of two types of polypeptide chains: the
heavy chain (H) and the light chain (L). If the immune system could construct 104 dif-
ferent light chains and 104 heavy chains, then the random combination of light and heavy
chains w’mld allow the construction of !08 different antibodies. The chains themselves are
constructed from interchangeable components. The heavy and light chains both contain a
variable (V) region of about 100–11(J amin~ acids that differ from one antibody to the next.
The structure of the antibody V-region is encoded by multiple gene segments, whereas most
biological molecules are encoded by a single contiguous length of DNA, The V-region of the
heavy chain, for example, is encoded using three gene segments, each of which has a ilumber
of different variants. Every combination of gene segments produces a unique V-region, so the
large number of genetic combinations makes it possible to construct large nllmber of different
V-regions. All the interchangeable variants of a gene segment are stored in a library of gene
segments. (Immunologists call these I;’:rarics rnultigene families.)

The gene segments are combined together before translation to an amino acid sequence
takes place. Fot example, the variable region of the heavy chain is constructed by selecting
one gene segment from each of three libraries, combining the three segments into a single
piccc of DNA, and then constructing from that strand the amino acid sequence which is the
find heavy chain The V-region of the !ight chain is made in an analogous way hut it is
constructed from only two gene scgrncnts, each with their own libraries, The V-regions for
an antibody, then, me e,lcoderf by five different gene segments, each drawn from a separate
gene library, When gene wgrnents are cumbined, nllcleotides can bc added or deleted at

the junctions adding a another level of diversity called junctional diversity. This additional
mechanism for achieving diversity will not be cmnsidcred in the model presentmi here,

By constructing antibodies from separate gene segments, each of which has a nurnbcr of
porrsihle variants, the immune syrntcm leverages a small amount of genetic matcria] to creatr
a large number of antibody molcculmr. As will be arg~lcx] later, this combinatorial mm:h~nism
is rrlost effective when the variants (referrmi to M cntrim in the Iihrary) are rliruiirnilar. If
all variantfi were the nnrnc there v.’;Iuld Im little advantage to interchangeability. TO st(idy
this cflcct, wc have ricfind R frirnp; ifrrd model of rm imrnunc 8ystcm, mid used the g~rlctir
algorithm to evolve individuals (each individud rcprmmnts the genetic siwcification for one
irr~rnulle systcrn) our exp~:irrmt~ Rht)w thnt tll~ cntrim in the lihr~rics bccomc progrcs-
oivcly Iilore dirrriirnilar undfw cvoluti(m, cvrl] though dimirrlilnrity is not directly reqliirmi by
thr fitrlcss flincti(mt ‘1’hirr(wgnnizntiot) of thr lihrfwie~ irr I “rmc(jrld~ry Pl!’ret” thnt cnn be
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interpreted as a balanced partitioning of the antigen recognition task.

The organization of the libraries is a genotypic effect that is caused by selection pressure on
the phenotype. The organization is implicit while the selection process is an explicit action.
This distinct ion between phenotype (the aggregate level at which selection takes place) and
genotype (the level at which variation takes place) is a hallmark of artificial life systems.
Our immune system model illustrates the explicit/implicit theme in two ways. First, the
secondary organization of the immune system libraries is necessary because antibodies must
collectively be able to recognize all antigens. The interdependence among components is
a secondary organization, and is not measured directly. Rather, an individual’s fitness is
evaluated according to how well it matches randomly selected antigens. Secondly, only a
small fraction of an individual’s possible antibodies are ezpresserf at any one time, yet an
individual’s fitness is determined by how well its expressed antibodies match the presented
antigens, In some cases, an individual may be “unlucky” in the sense that it has the genetic
material to match an antigen, but that material was unexpressed at the time the antigen was
presented. As we will see, our model shows a separation between genotype and phenotype
in a highly simplified setting, which allows us to quantify the effect.

In Sections 2 and 3, we review our artificial immune model an+ summarize earlier experiments
which tested the performance ot’ the model on various antigen recognition tasks. These
experiments demonstrated the capability of a library mechanism for encoding antibody genes
and showed that the genetic algorithm could optir.lize the antigen recognition capability of
the model. However, it. was not clear from these experiments exactly how the system evolved
as well as it did. [n the extended experiments described in Section 4 we explore the behavior
of the model more carefully. Specifically, we study the relationship between sampled fitness
(an incomplete testing of an individual’s fitness that guides the selection process) and a
complete measure of the individual’s fitness which we call true fitness, Finally, in Sections 5
and 6, the effects of evolution on the genome are considered. Section 5 motivates a measure
of library organization called Hamming separation, and Section 6 experimentally compares

this measure with true fitness

2 Artificial Immune System

(.)ur simplified model of the immune systcrn uses bitstring~l to represent rnolcculm and the
gene segment libraries. The patterns of the bits represent the shapes of rnoleculm nnd

dctcrminc their ability to bind with other rrlolecules. This rcprcsentati{jrl is loosely bwxi
on A bit~tring universe introduced by Farl~m et al [3], In our bitstring universe, rnolccular
binding taken place when nm antibody bitstring and an antigen bitstring “match” each other
A match occurs when the antigen and antibody have complementary ~hapcs (i,e,, binary
pattcm~), whic}l reflects the Iock-and-kcy fit of actual rnohwulcs during binding, l~ig~~rr
1 shows m binary smtigcn mohwulc and n bin~ry antibody rTIolm:ulc ‘1’he binding afiinity
bctwr+cn real antigens and rml nntiboriim i8 primarily (ictcrrninmi by rrl~)lccular s}]mpr nnd
phyfli(:ill propcrtim Suc}l mr clcctrf)~tmtic surfncc chiwge, both of which nrc complemcntnry
whcr~ tile m(~lt!CUlcS hfLVr ii high itfiinity.



Matching is not required to take place perfectly along the entire length of the molecules.
The exclusive-or operator (XOR) is used to compute which bits are complementary matches
between the two molecules. The bits that match can be used to compute a “match score”
in a number of differe~t ways. In the experiments described here, the match score is simply
the sum of the number of matching bits. In the figure, for example, the XOR operator has
found 27 bits that are complementary between the antigen and the antibody, so the match
score is 27.

L..–_. -_–._._.. _. ...-. .- . . .. . . . . . . . .. . . . –...-—

Figure 1: Binding/recognition process for binary molecules

2.1 Antibody Libraries

Each individual in the simulated population contains four equal-size libraries of antibody
segments as shown at the top of Figure 2. Within each library there are eight elements,

represented as bitstrings of length sixteen, so each individual has a total of 512 bits. This
structure is a simplified model of the human immune system which has scvenz libraries, each
with a different number of gene segments [4].

The eqmession oi an antibody is also shown in Figure 2. One segment from each library
is chosen, usually at random, and the four selected elements are concatenated into a single
bitstring that is sixty-four bits in length. We call this bitstring an antibody molecule, one of
several that will be uued to compute the fitness of the individual, The set of antibodies that
can be constructed from the libraries is called the potential anti60dy repertoire. Not every

antibody from the potential repertoire is present in an individual at a given time. The set
of antibodies that have currently been expressed is called the ezpressed antibody repertowe.

The fitness of an iildividual is determined by its overall ability to recognize antigen molecules.
Fitness is evaluated by exposing an individual to a set of antigens and testing how well it
recognizes euch antigen in that set. The expressed antibodies arc used to do the recognition,
Each antig~n receives an antigen scor~, which is the maximum of all the match scores corn.

puted M wccn that antigen and the exprcssml antibodies, The antigen score quantifies how
WC!lthe immune system recognized that particular antigen, The overall fitness of the indi.

vidual is found by combini~lg the various antigw scnreo. The oimplest method for computing

the fitnesn, used here, is to average the mores for the different antigens.

‘~’l’hcare two types d light chainn, A and m, each d which has two V-region Iibrariec, So whik ● givet,

antihmiy in the prmlm.1 d gmc negmmtn from mly five Iihrariq emh cell mntaino a tdd d ceven V-region

Iibrmrim,



One individual qenome equals four libraries:

L.lbrary 1 Library 7 Library 3 Library 4

Figure 2: Process of constructing/expressing antibody from genetic library

2.2 The Genetic Algorithm

The e~ects of evolution are simulated on the binary immune system by using the genetic
algorithm, a computational model of genetic evolution [5, 6]. A population of individuals
is represented in the computer as bitstrings. At each generation the population is evalu-
ated according to some measure of fitness. A new population is formed from the evaluated
population, where the individuals with higher fitness have more offspring than the less fit in-
dividuals. This cycle of evaluation ?.nd reproduction continues, and through time the average
fitness of the population increases. Two genetic operators, crossover and mutation, modify
the contents of the population as the genetic algorithm progresses. Crossover combines the
binary patterns of two individuals into a new individual, whereas mutation changes the bits
of an individual with some small probability. A discussion of genetic algorithm methodology
is found in [6], The experiments reported here were conducted with Genesis 1.2ucsd, which
is a genetic algorithm tool written in C [11].

3 Previous Results

In earlier experiments the artificial immune system was used to test whether the genetic al-
gorithm could evolve the gene libraries effectively [9],[LO]. Preliminary experiments showed
that the genetic algorithm could eauily evolve an immune system (one using gene libraries)
that recognized 100 percent of all possible antigens, Thus, even though the genetic represen-
tation of antibodies lNas complex, it was possible to optimize the antigen recognition task.
This first experiment, however, wm basrd on perfect information from the environment, so
the recognition task was not as difficult as that faced by the real immune system.

[n t k next set of experirncmto the evaluation of individual fitness wa~ subjected to two types

of sampling noi~e, simulating the incomplete information available to real immune eye!emm.
IJird., each individual was exposed to a only subset of the existing antigens, modeling the
fact th~t real individuals fire not cxpomrl to all diseases during their Iifetimea. Second, each
individual wan only dlowcd to (Lxprcm ~ frnction of their potential antibody repertoire, ‘[’bin
nimlplillg opcratim] was motivntrd by the fnct that at Ill[mt 107 of the 1011 pomsiblc mltikdics

,5



are present m the body, as expressed molecules, at any given time.

Genetic algorithm experiments were performed for varicus antigen exposure rates and anti-
body expression rates. This type of partial evaluation of the fitness, due to sampling noise,
reduces the efficiency of the selection process and the rate of cvolution is slowed. Both sets of
experiments showed that even with sparse and incomplete information, the immune system
libraries could evolve and make continued improvement in overall fitness. This result holds

across a wide range of sampling rates, with the implication that the mechanism for gene
libraries is robust and not a fragile construct.

The question arose has to how well the libraries that were evolved in the later experiments
compared with the first libraries that were evolved usiug perfect information. That question
is the basis for this paper, where the sampled fitness, based on incomplete information, is
compared with the true fitness that is based on perfect information.

4 True Fitness vs. Sampled Fitness

In general, true fitness can be defined as an individual’s fitness when evaluated in all possible
conditions. Within the context of the immune system model, true fitness is an individual’s
ability to recognize all possible antigens using its entire potential antibody repertoire. As the
name suggests, sampled fitness measures an individual’s fitness for only a sample of possible
environmental cox,ditions. In the context of the immune system model sampled fitness is an
individual’s ability to recognize those antigens it stochastically encounters, using only that
portion of the antibody repertoire it happens to express (the explessed antibody repertoire).
Thus, sampled fitness is only an approximation of true fit.;ess. We would like to know how
well this approximation works when combined with the processes of evolution.

In the real world, true fitness is clearly a fiction. An individual would have to relive its life
many times in all possible circumstances so that its fitness could be completely tested, While
this is impossible in the real world it is feasible for the artificial immune system. True fitness
is computed by expressing the entire pGtential antibody repertoire and using the highest
match score found for each antigen being recognized.

In the experiment described in this section , our artificial immune system is evolved using

the genetic algorithm. Fitness is computed according to an individual’s ability to recognize
antigen strings. An individual expresses a small subset of antibodies from its potel,tial
repertoire oi antibody molecules. Then for each antigen prescmtcd to it, the individual

selects the expressed antibody that best recognizes the ant igen, and receives an ant igcn
match score, The antigen match score, averaged over the set of antigcms it encounters,

becomes the individual’s sampled fitness. The genetic algorithm determines an individual’s
reproductive future based on the san~plcd fitness,

‘The experiments used a population size of 500 individuals, and all experiments were run for

onc thousanf{ generations. !nstciul of initializing the population with ritndorn bitstrings, m
is common practice for C~A cxperirnents, the population began as dl zero-valued bits (thr

[em-m for this is given in the next section).
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Figure 3: Sampled Fitness Curves and True Fitness Curves

We compare sampled fitness with the true fitness and the results are shown in Figure 3.
For this experiment, sampled fitness is computed by expressing only eight antibodies of the
4096 in the potential repertoire. Figure 3 shows the population average for true fitness
and the population average for sampled fitness. These curves have been averaged over thirty
experiments. Initially the population contains individuals that are all zero bits, so the fitness
of the population begins at 50 percent, i.e. no better th~n fair guessing.

In general, the true fitness will be $igher than the sampled fitness, as is shown by the
experiment, When computing the sampled fitness, the best antibody for recognizing a given
antigen will not always be expressed, so with some fixed probability a less appropriate
antibody will be used instead. For the true fitness, however, all antibodies are always

expressed from the potential repertoire, so the best antibody is always available. Note that
the ratio of sampled fitness to true fitness remains almost constant at 0.615 throughout the
experiment (ratio taken with respect to the 50’ZOfitness level: ratio = (sarnplefitness –

0)5)/( true/ttne9s -- 0.5)).

5 Coverage of Antigen Space

The set of all possible antigens is called antigen space, Because antigen molecules in the
binary model are 64 bits in length, the total number of unique antigens is 264 = 1.8 x 1019,
which is the size of antigen space,

A given antibody molecule recognizes some set of antigens and therefore covers some portion
of antigen space. The amount of coverage provided by one antibody is determined by the

acceptable matching error, If no error is allowed during matching an antibody can only

rccognizc the antigen that is its exact complement. If, however, thd immune system is

7
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Figure 4: Coverage of antigen space by antibodies

allowed to make a one-bit error during matching then each antibody can cover 65 antigens:
the one antigen it matches exactly and the 64 antigens created by changing one of its 64
bits. The error radiw , r, is the number of bits that may be in error during matching The
number of antigens covered by cne antibody within a given error radius is:

r 1
coverage = x( )iS=o

where 1 equals 64, the length of the bitstrings.

An error radius of two bits, for example, allows one antibody to cover 1 +64+ 2016 = 2081
antigens, while an error radius of 25 bits lets one antibody cover 9.5 x 1017 antigens, which
is roughly 5 percent of antigen space. Figure 4a shows an image of antigen space being
covered by antibody molecules. The crosses are antigen molecules while the black dots are
antibody molecules. Tks circle~ around the antibodies show the coverage each one provides
for a given error radius. If the error radius were reduced then each antibody would provide
less coverage.

Figure 4 can be used to discuss some imp~rtant aspects of the immune system libraries,
although both real antigen space and our model have a much higher dimensionality than
the two-dirr.ensional picture shows. Note that every antibody is associated with a unique
location in antigen space-the location of the antigen that han an exactly complementary
shape. Second, the distance between two molecules in antigen space is equal to the number
of bits by which they differ, This is called Hamming distance.

Now, becaume the distance between twn oimilar antibody molecules is small, such molecules
would recognize many of the same antigens. Similar molecules would therefore have overlap-
ping coverage in antigen space. C)verlapping coverage is redundant and reduces the usefulness
of an antibody, Because the immune system only haa a limited number of antibodies it is
desirable to reduce redundant coverage by arranging antibodies as far from each other as
possible, This provides a possible way of indirectly me~uring coverage, as discussed in
Section 6.
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erege of _ spaca aad gcaetfc orgmieatkm with a xnamgedle anmunti

)eI@ with tho arti3dal kmune ayatem #huw that @zwtic dgcuithxn C=

$8SddC fnfbmmtioaa. h kt the &C d@dfIb has been able kJ Or@d%O

tiurc of the antfbody Iibmrk - only* he Ma of mmpled MWI.
~ da -al wam8howRin two m. Fist, s d!$tinction W4amade
m and sa@ed dtn-u, almwing hi tlm ~enetdc algodthrn mu eper~tlng
rod- remdte d ● aeccmd Ievd, TIM distinction betwem @o fitnems and



sampled fit ness becomes important for the evolution of complex systems acting in complex
environments, such as in most Artificial Life models. True fitness could be a useful tool
for monitoring the progress of more complex GA experiments. However, true fitness is
computationally expensive and in general would be infeasible to compute. One advantage

of the artificial immune system model is that it is simple enough to study true fitness, but
just complex enough to have interesting behavior.

The second way of observing the organization of genetic material wzz through the use of a
special measure called Hamming separation. This measure was shown to improve in a steady
fashion ulong with the true fitness of the population. This provides additional evidence that
the genetic information is undergoing implicit organization than directly required by the

fitness function.
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